写真a

YAMAMOTO Masahiro

Position

Professor

Homepage URL

http://www.chem.konan-u.ac.jp/PCSI/

Mail Address

E-mail address

External Link

Graduating School 【 display / non-display

  • Kyoto University   Graduate School, Division of Engineering   Graduated

    - 1985

      More details

  • Kyoto University   Faculty of Engineering   Dept. industrial chemistry   Graduated

    1979.4 - 1983.3

  • Kyoto University   Faculty of Engineering   Graduated

    - 1983

      More details

  • Kyoto University   Faculty of Engineering   School of Industrial Chemistry   Graduated

    - 1983

      More details

Graduate School 【 display / non-display

  • Kyoto University   Graduate School, Division of Engineering   Master's Course   Completed

    1983.4 - 1985.3

Studying abroad experiences 【 display / non-display

  • 1993.10
    -
    1994.9

    アイオワ州立大学/エネルギー省エームズ研究所   訪問研究員

  • 1997.10
     
     

    オークリッジ国立研究所   訪問研究員

  • 1998.3
     
     

    オックスフォード大学材料工学科   訪問研究員

  • 1999.3
     
     

    ウルム大学化学科   訪問研究員

  • 1999.4
     
     

    カリフォリニア大学サンタクルーズ校   訪問研究員

Campus Career 【 display / non-display

  • KONAN UNIVERSITY   Graduate School of Natural Science (Masters Degree Program)   Graduate School of Natural Science   研究科長

    2021.4 - 2023.3

  • KONAN UNIVERSITY   Faculty of Science and Engineering   Faculty of Science and Engineering Department of Chemistry of Functional Molecules   Professor

    2009.4

External Career 【 display / non-display

  • 京都大学大学院工学研究科物質エネルギー化学専攻

    1999.2 - 2009.3

      More details

    Country:Japan

  • 京都大学エネルギー理工学研究所

    1996.5 - 1999.1

      More details

    Country:Japan

  • 京都大学原子エネルギー研究所

    1985.4 - 1996.4

      More details

    Country:Japan

  • Kyoto University Graduate School of Engineering, Department of Energy and Hydrocarbon Chemistry

    1999.2 - 2009.3

      More details

    Country:Japan

    researchmap

  • 京都大学エネルギー理工学研究所

    1985.4 - 1999.1

 

Papers 【 display / non-display

  • Reciprocal Sum Expression for Steady-state Kinetics —Enzyme Reactions and Voltammetry— Reviewed

    Yuko YOKOYAMA, Masahiro YAMAMOTO, Kohei MIYAZAKI, Takeshi ABE, Kenji KANO

    Electrochemistry   90 ( 10 )   103002 - 103002   2022.7

     More details

    Publisher:The Electrochemical Society of Japan  

    DOI: 10.5796/electrochemistry.22-66044

    researchmap

  • The use of the reference electrode equipped with an ionic liquid salt bridge in electrochemistry of ionic liquids: A convenient way to align the formal potentials of redox reactions in ionic liquids based on the standard hydrogen electrode scale

    Takashi Kakiuchi, Shota Domae, Taishi Miyadi, Kaito Kibi, Masahiro Yamamoto

    ELECTROCHEMISTRY COMMUNICATIONS   126   2021.5

     More details

    Joint Work

    Publisher:ELSEVIER SCIENCE INC  

    A hydrophobic ionic liquid composed of a cationic and anionic species having similar magnitudes of hydrophobicity and mobilities can work as a salt bridge separating two electrolyte solutions, that is, the sample solution and the inner solution of the reference electrode. A few examples of superiority of this ionic liquid salt bridge (ILSB) over the traditional salt bridges made of a concentrated aqueous KCl solution have been demonstrated. The present study is a further extension of the use of ILSB to voltammtery of the redox reactions of ferrocene/ferrocenium and cobaltocene/cobaltocenium couples in an ionic liquid, tributyl(2-methoxyethyl) phosphonium bis(pentafluoroethanesulfonyl) amide ([TBMOEP][C2C2N]), which is also used as the ILSB. The obtained mid-point potentials (Ems) are converted straightforwardly to those referred to the standard hydrogen electrode (SHE). A comparison of Em (SHE) values of the two redox couples in [TBMOEP][C2C2N] with the corresponding values in molecular solvents suggests that the environment given by [TBMOEP][C2C2N] to the two redox reactions is macroscopically similar to that of methanol.

    DOI: 10.1016/j.elecom.2021.107021

    researchmap

  • Single ion activity coefficients of chloride ions in aqueous sodium chloride and magnesium chloride estimated potentiometrically based on ionic liquid salt bridge at 298 K Invited Reviewed

    Takashi Kakiuchi, Masaki Hisazumi, Yasufumi Moriyama, Masahiro Yamamoto

    Electrochemistry Communications   124   106953   2021.3

     More details

  • Tailored Photoluminescence Properties of Ag(In,Ga)Se2 Quantum Dots for Near-Infrared In Vivo Imaging Reviewed

    Tatsuya Kameyama, Hiroki Yamauchi, Takahisa Yamamoto, Toshiki Mizumaki, Hiroshi Yukawa, Masahiro Yamamoto, Shigeru Ikeda, Taro Uematsu, Yoshinobu Baba, Susumu Kuwabata, Tsukasa Torimoto

    ACS Applied Nano Materials   3 ( 4 )   3275 - 3287   2020.2

     More details

    Joint Work

    Publisher:American Chemical Society (ACS)  

    Copyright © 2020 American Chemical Society. Multinary semiconductor quantum dots (QDs) that have less toxicity and show near-infrared light responsivity have attracted much attention for in vivo bioimaging. In this study, we controlled the optical properties of Ag-In-Se QDs by modulating the nonstoichiometry and the degree of Ga3+ doping. Precise tuning of the Ag/In ratio of Ag-In-Se QDs enabled a sharp band-edge emission to emerge without broad defect-site emission. Ga3+ doping into Ag-In-Se (AIGSe) QDs enlarged their energy gap, resulting in a blue shift of the band-edge PL peak from from 890 to 630 nm. The band-edge PL intensity was remarkably enlarged by surface coating with a thin GaSx shell followed by treatment with trioctylphosphine, the highest PL yield being 38% for the PL peak at 800 nm. Thus-obtained QDs were successfully used as near-IR PL probes for three-dimensional in vivo bioimaging in which the wavelengths of excitation and detection lights could be selected in the first biological window, and then the signals were clearly detected from AIGSe@GaSx core-shell QDs injected into biological tissues by ca. 5 mm in depth.

    DOI: 10.1021/acsanm.9b02608

    researchmap

  • Effects of Contact Angle and Flocculation of Particles of Oligomer of Tetrafluoroethylene on Oil Foaming Reviewed

    Ryo Murakami, Syuji Kobayashi, Manami Okazaki, Alexander Bismarck, Masahiro Yamamoto

    Frontiers in Chemistry   6   2018.9

     More details

    Joint Work

    Publisher:Frontiers Media SA  

    DOI: 10.3389/fchem.2018.00435

    researchmap

display all >>

Books and Other Publications 【 display / non-display

  • 演習で学ぶ 科学のための数学 

    山本雅博,加納健司( Role: Joint author)

    化学同人  2018.4  ( ISBN:9784759820027

  • たのしい物理化学1

    加納健司,山本雅博( Role: Joint author)

    講談社サイエンティフク  2016.11  ( ISBN:978-4-06-154395-9

  • 演習で学ぶ科学のための数学

    Sivia, D. S., Rawlings, S. G., 山本, 雅博, 加納, 健司

    化学同人  2018.4  ( ISBN:9784759820027

     More details

  • 楽しい物理化学1 化学熱力学・反応速度論

    加納, 健司, 山本, 雅博

    講談社  2016.11  ( ISBN:9784061543959

     More details

  • 電気化学便覧

    電気化学会(4章2節電気二重層 5 章11 節Kelvin 法)

    丸善出版  2013.1  ( ISBN:9784621084137

     More details

display all >>

Review Papers (Misc) 【 display / non-display

display all >>

Presentations 【 display / non-display

  • Model Hamiltonian for several common stacked structures

    Mabuchi Mahito

    Model Hamiltonian for several common stacked structures  The Physical Society of Japan (JPS)

     More details

    Event date: 1990.10

    researchmap

Industrial property rights 【 display / non-display

  • 放射性物質吸着剤の製造方法

    江口晴樹,山本雅博

     More details

    Announcement no:6084829

    Country of applicant:Domestic  

  • 放射性セシウム吸着剤およびそれを用いた放射性セシウムの回収方法

    江口晴樹,山本雅博

     More details

    Patent/Registration no:6240382

    Country of applicant:Domestic  

Grant-in-Aid for Scientific Research 【 display / non-display

  • 積分方程式/第一原理計算結合理論を用いた電極界面現象の解明

    2018.4 - 2021.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research(C)

    山本 雅博

      More details

    本年度は,1)氷表面の第一原理計算,2)金属電極表面(Al(100)面, Ag(100)面)のQuantum Espresso(QE)コード(https://www.quantum-espresso.org/ )を用いた第一原理計算,3)金属電極帯電表面(Al(100)面, Ag(100)面)の第一原理計算としてQE+ESM(Effective Screening Medium有効媒質理論)法をもちいて金属|真空界面での電位分布を求めた。さらに,4) NaCl電解質水溶液|Al(100)電極帯電界面とRISM(Reference Interaction Site Model)積分方程式を結合させた第一原理計算(QE+ESM+RISM)計算を行い,電極から沖合へのイオン分布を求めるところまで完了した。ただし,計算は濃度は1点(1 mol dm-3)で正に帯電した電極の電位もある一定の条件でしか計算できなかった。すべての計算は,産総研の大谷らが作成したコードを用いた。1), 2), 3)ではこれまで報告された理論計算とよく一致し,本研究での計算が正確に求められていることを確認した。4)では,多くの帯電状態や多くの電解質濃度での計算はできなかったが,正に帯電した電極表面からのナトリウムイオンおよび塩化物イオンの動径分布関数を求めたところ,物理的に意味のある結果となった。実験結果と比較するには,多くの帯電状態(電位)および多くの電解質濃度について求める必要があるが,3)の計算で,その計算結果を解釈するところで多くの検討を重ねたため,本年度はそこまで到達しなかった。

    researchmap

  • 積分方程式/第一原理計算結合理論を用いた電極界面現象の解明

    2018.4 - 2021.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research(C)

    山本 雅博

      More details

    本年度は,1)氷表面の第一原理計算,2)金属電極表面(Al(100)面, Ag(100)面)のQuantum Espresso(QE)コード(https://www.quantum-espresso.org/ )を用いた第一原理計算,3)金属電極帯電表面(Al(100)面, Ag(100)面)の第一原理計算としてQE+ESM(Effective Screening Medium有効媒質理論)法をもちいて金属|真空界面での電位分布を求めた。さらに,4) NaCl電解質水溶液|Al(100)電極帯電界面とRISM(Reference Interaction Site Model)積分方程式を結合させた第一原理計算(QE+ESM+RISM)計算を行い,電極から沖合へのイオン分布を求めるところまで完了した。ただし,計算は濃度は1点(1 mol dm-3)で正に帯電した電極の電位もある一定の条件でしか計算できなかった。すべての計算は,産総研の大谷らが作成したコードを用いた。1), 2), 3)ではこれまで報告された理論計算とよく一致し,本研究での計算が正確に求められていることを確認した。4)では,多くの帯電状態や多くの電解質濃度での計算はできなかったが,正に帯電した電極表面からのナトリウムイオンおよび塩化物イオンの動径分布関数を求めたところ,物理的に意味のある結果となった。実験結果と比較するには,多くの帯電状態(電位)および多くの電解質濃度について求める必要があるが,3)の計算で,その計算結果を解釈するところで多くの検討を重ねたため,本年度はそこまで到達しなかった。

    researchmap

  • 積分方程式/第Ⅰ原理計算結合理論を用いた電極界面現象の解明

    2018.4 - 2021.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research(C)

      More details

    積分方程式/第Ⅰ原理計算結合理論を用いた電極界面現象の解明

  • Formulation of the basis for measuring ion activity in concentrated aqueous solutions and its application to high precision measurements of ocean acidification

    2015.4 - 2018.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research(C)

    Kakiiuchi Takashi

      More details

    The purpose aimed has been achieved by showing that using an ionic liquid salt bridge (ILSB) enables the determination of pH defined in terms of the hydrogen ion activity of artificial seawater with the precision of 0.01 pH unit as 95 % confidence interval. Related technical problems to be solved for practical pH monitoring of seawater have been identified. In addition, other findings originally not intended include the stabilization of hydrogen ion in the high ionic strength HCl-NaCl mixtures, the dynamic transport of water through ILSB as a source of drifting the potential of the reference electrode, the unique correlation between the potential exhibited by the ILSB-equipped reference electrodes in water as well as ionic liquid with that of the standard hydrogen electrode, and the clarification of the nonthermodynamic measurability of pH on the basis of hydrogen ion activity through polemics.

    researchmap

  • Formulation of the basis for measuring ion activity in concentrated aqueous solutions and its application to high precision measurements of ocean acidification

    2015.4 - 2018.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research(C)

    Kakiiuchi Takashi

      More details

    The purpose aimed has been achieved by showing that using an ionic liquid salt bridge (ILSB) enables the determination of pH defined in terms of the hydrogen ion activity of artificial seawater with the precision of 0.01 pH unit as 95 % confidence interval. Related technical problems to be solved for practical pH monitoring of seawater have been identified. In addition, other findings originally not intended include the stabilization of hydrogen ion in the high ionic strength HCl-NaCl mixtures, the dynamic transport of water through ILSB as a source of drifting the potential of the reference electrode, the unique correlation between the potential exhibited by the ILSB-equipped reference electrodes in water as well as ionic liquid with that of the standard hydrogen electrode, and the clarification of the nonthermodynamic measurability of pH on the basis of hydrogen ion activity through polemics.

    researchmap

display all >>

Other External funds procured 【 display / non-display

  • 多孔性電極中のイオン輸送現象の解明と高出入力電池への展開

    2013.10 - 2018.3

    JST-CREST  JST-CREST

 

Committee Memberships 【 display / non-display

  • 2002.4   日本分析化学会  近畿支部・常任幹事・会計幹事

  • 2010.4   電気化学会  関西支部・幹事・常任幹事