写真a

OKUMURA Makoto

Position

Lecturer

Research Field

Natural Science / Applied mathematics and statistics

External Link

Graduating School 【 display / non-display

  • Kyoto University of Education   Faculty of Education   Graduated

    2012.4 - 2016.3

Graduate School 【 display / non-display

  • Osaka University   Graduate School, Division of Information Science   Doctor's Course   Completed

    2018.4 - 2021.3

  • Osaka University   Graduate School, Division of Information Science   Master's Course   Completed

    2016.4 - 2018.3

External Career 【 display / non-display

  • 北海道大学   電子科学研究所

    2021.10 - 2023.3

      More details

    Country:Japan

  • 北海道大学   電子科学研究所

    2021.4 - 2021.9

      More details

    Country:Japan

 

Papers 【 display / non-display

  • Structure-preserving schemes for Cahn–Hilliard equations with dynamic boundary conditions Reviewed

    Makoto Okumura, Takeshi Fukao

    Discrete and Continuous Dynamical Systems - S   17 ( 1 )   362 - 394   2024.1

     More details

    Authorship:Lead author, Corresponding author   Publisher:American Institute of Mathematical Sciences (AIMS)  

    DOI: 10.3934/dcdss.2023207

    researchmap

  • Zonula occludens‐1 distribution and barrier functions are affected by epithelial proliferation and turnover rates Reviewed

    Keisuke Imafuku, Hiroaki Iwata, Ken Natsuga, Makoto Okumura, Yasuaki Kobayashi, Hiroyuki Kitahata, Akiharu Kubo, Masaharu Nagayama, Hideyuki Ujiie

    Cell Proliferation   56 ( 9 )   e13441   2023.3

     More details

  • A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition Reviewed

    Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa

    Communications on Pure & Applied Analysis   21 ( 2 )   355 - 355   2022.2

     More details

    Authorship:Lead author   Publisher:American Institute of Mathematical Sciences (AIMS)  

    <p lang="fr">&lt;p style='text-indent:20px;'&gt;We propose a structure-preserving finite difference scheme for the Cahn–Hilliard equation with a dynamic boundary condition using the discrete variational derivative method (DVDM) proposed by Furihata and Matsuo [&lt;xref ref-type="bibr" rid="b14"&gt;14&lt;/xref&gt;]. In this approach, it is important and essential how to discretize the energy which characterizes the equation. By modifying the conventional manner and using an appropriate summation-by-parts formula, we can use a standard central difference operator as an approximation of an outward normal derivative on the discrete boundary condition of the scheme. We show that our proposed scheme is second-order accurate in space, although the previous structure-preserving scheme proposed by Fukao–Yoshikawa–Wada [&lt;xref ref-type="bibr" rid="b13"&gt;13&lt;/xref&gt;] is first-order accurate in space. Also, we show the stability, the existence, and the uniqueness of the solution for our proposed scheme. Computation examples demonstrate the effectiveness of our proposed scheme. Especially through computation examples, we confirm that numerical solutions can be stably obtained by our proposed scheme.&lt;/p&gt;</p>

    DOI: 10.3934/cpaa.2021181

    researchmap

  • A new structure-preserving scheme with the staggered space mesh for the Cahn–Hilliard equation under a dynamic boundary condition Reviewed

    Makoto Okumura, Takeshi Fukao

    Advances in Mathematical Sciences and Applications   30 ( 2 )   347 - 376   2021.8

     More details

    Authorship:Lead author   Publisher:Gakkotosho  

    researchmap

  • Numerical results for ordinary and partial differential equations describing motions of elastic materials Reviewed International coauthorship

    Chiharu Kosugi, Toyohiko Aiki, Martijn Anthonissen, Makoto Okumura

    Advances in Mathematical Sciences and Applications   30 ( 2 )   387 - 414   2021.8

     More details

    Publisher:Gakkotosho  

    researchmap

display all >>

Review Papers (Misc) 【 display / non-display

  • 動的境界条件下のCahn–Hilliard方程式に対する多段線形化構造保存スキーム

    奥村 真善美

    甲南大学紀要. 知能情報学編   16 ( 2 )   17 - 34   2024.2

     More details

    Authorship:Lead author, Last author, Corresponding author   Publishing type:Rapid communication, short report, research note, etc. (bulletin of university, research institution)  

  • A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition

    Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa

    arXiv   2020.7

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Internal/External technical report, pre-print, etc.  

    DOI: https://doi.org/10.48550/arXiv.2007.08355

  • 体積保存型Allen-Cahn方程式に対する離散変分導関数法による非線形及び線形スキーム

    奥村 真善美

    第39回発展方程式若手セミナー報告集   49 - 58   2017.11

     More details

    Authorship:Lead author   Publishing type:Research paper, summary (national, other academic conference)  

Presentations 【 display / non-display

  • 動的境界条件下のある構造保存スキームの可解性の証明に現れる 行列の正則性について

    奥村真善美

    日本数学会2024年度年会  2024.3 

     More details

    Event date: 2024.3

    researchmap

  • 動的境界条件下のCahn-Hilliard方程式に対する構造保存スキームの可解性とある行列の正則性について

    奥村真善美

    日本応用数理学会第20回研究部会連合発表会  2024.3 

     More details

    Event date: 2024.3

    researchmap

  • 空間2次元のGMSモデルに対する構造保存スキームの可解性とある行列の正則性について

    奥村真善美

    第49回発展方程式研究会  2023.12 

     More details

    Event date: 2023.12

    researchmap

  • 空間2次元のGMSモデルに対する構造保存スキーム とその可解性 Invited

    奥村真善美

    第2回若手応用数学研究会  2023.12 

     More details

    Event date: 2023.12

    researchmap

  • Structure-preserving schemes for the Cahn–Hilliard models under dynamic boundary conditions with characteristic conservation laws Invited

    Makoto Okumura

    Multidisciplinary research on nonlinear phenomena: modeling, analysis and applications  2023.11 

     More details

    Event date: 2023.11

    researchmap

display all >>

Academic Awards Received 【 display / non-display

  • 大阪大学情報科学研究科賞

    2018.3   大阪大学  

Grant-in-Aid for Scientific Research 【 display / non-display

  • 力学的境界条件下の問題に対する、任意多角形格子上の構造保存数値解法の構成

    2023.4 - 2028.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    奥村 真善美

      More details

    Authorship:Principal investigator

    researchmap

  • Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary

    2021.8 - 2023.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up

      More details

 

Committee Memberships 【 display / non-display

  • 2023.10 - 2025.9   一般社団法人日本応用数理学会  一般社団法人日本応用数理学会 総務委員会 委員

      More details

  • 2022   日本応用数理学会  2022年度年会実行委員

 

Qualification acquired 【 display / non-display

  • High School Teacher Specialization License

  • First Kind of High School Teacher License

  • First Kind of High School Teacher License

  • Junior High School Teacher Specialization License

  • First Kind of Junior High School Teacher License