Position |
Lecturer |
Research Field |
Natural Science / Applied mathematics and statistics |
External Link |
|
|
Graduating School 【 display / non-display 】
-
Kyoto University of Education Faculty of Education Graduated
2012.4 - 2016.3
Graduate School 【 display / non-display 】
-
Osaka University Graduate School, Division of Information Science Doctor's Course Completed
2018.4 - 2021.3
-
Osaka University Graduate School, Division of Information Science Master's Course Completed
2016.4 - 2018.3
External Career 【 display / non-display 】
-
北海道大学 電子科学研究所
2021.10 - 2023.3
Country:Japan
-
北海道大学 電子科学研究所
2021.4 - 2021.9
Country:Japan
Papers 【 display / non-display 】
-
Structure-preserving schemes for Cahn–Hilliard equations with dynamic boundary conditions Reviewed
Makoto Okumura, Takeshi Fukao
Discrete and Continuous Dynamical Systems - S 17 ( 1 ) 362 - 394 2024.1
Authorship:Lead author, Corresponding author Publisher:American Institute of Mathematical Sciences (AIMS)
-
Keisuke Imafuku, Hiroaki Iwata, Ken Natsuga, Makoto Okumura, Yasuaki Kobayashi, Hiroyuki Kitahata, Akiharu Kubo, Masaharu Nagayama, Hideyuki Ujiie
Cell Proliferation 56 ( 9 ) e13441 2023.3
Publisher:Wiley
DOI: 10.1111/cpr.13441
Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1111/cpr.13441
-
A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition Reviewed
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa
Communications on Pure & Applied Analysis 21 ( 2 ) 355 - 355 2022.2
Authorship:Lead author Publisher:American Institute of Mathematical Sciences (AIMS)
<p lang="fr"><p style='text-indent:20px;'>We propose a structure-preserving finite difference scheme for the Cahn–Hilliard equation with a dynamic boundary condition using the discrete variational derivative method (DVDM) proposed by Furihata and Matsuo [<xref ref-type="bibr" rid="b14">14</xref>]. In this approach, it is important and essential how to discretize the energy which characterizes the equation. By modifying the conventional manner and using an appropriate summation-by-parts formula, we can use a standard central difference operator as an approximation of an outward normal derivative on the discrete boundary condition of the scheme. We show that our proposed scheme is second-order accurate in space, although the previous structure-preserving scheme proposed by Fukao–Yoshikawa–Wada [<xref ref-type="bibr" rid="b13">13</xref>] is first-order accurate in space. Also, we show the stability, the existence, and the uniqueness of the solution for our proposed scheme. Computation examples demonstrate the effectiveness of our proposed scheme. Especially through computation examples, we confirm that numerical solutions can be stably obtained by our proposed scheme.</p></p>
DOI: 10.3934/cpaa.2021181
-
A new structure-preserving scheme with the staggered space mesh for the Cahn–Hilliard equation under a dynamic boundary condition Reviewed
Makoto Okumura, Takeshi Fukao
Advances in Mathematical Sciences and Applications 30 ( 2 ) 347 - 376 2021.8
Authorship:Lead author Publisher:Gakkotosho
-
Numerical results for ordinary and partial differential equations describing motions of elastic materials Reviewed International coauthorship
Chiharu Kosugi, Toyohiko Aiki, Martijn Anthonissen, Makoto Okumura
Advances in Mathematical Sciences and Applications 30 ( 2 ) 387 - 414 2021.8
Publisher:Gakkotosho
Review Papers (Misc) 【 display / non-display 】
-
動的境界条件下のCahn–Hilliard方程式に対する多段線形化構造保存スキーム
奥村 真善美
甲南大学紀要. 知能情報学編 16 ( 2 ) 17 - 34 2024.2
Authorship:Lead author, Last author, Corresponding author Publishing type:Rapid communication, short report, research note, etc. (bulletin of university, research institution)
-
A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa
arXiv 2020.7
Authorship:Lead author, Corresponding author Publishing type:Internal/External technical report, pre-print, etc.
-
体積保存型Allen-Cahn方程式に対する離散変分導関数法による非線形及び線形スキーム
奥村 真善美
第39回発展方程式若手セミナー報告集 49 - 58 2017.11
Authorship:Lead author Publishing type:Research paper, summary (national, other academic conference)
Presentations 【 display / non-display 】
-
動的境界条件下のCahn-Hilliard方程式に対する構造保存スキームの可解性とある行列の正則性について
奥村真善美
日本応用数理学会第20回研究部会連合発表会 2024.3
Event date: 2024.3
-
空間2次元のGMSモデルに対する構造保存スキームの可解性とある行列の正則性について
奥村真善美
第49回発展方程式研究会 2023.12
Event date: 2023.12
-
Structure-preserving schemes for the Cahn–Hilliard models under dynamic boundary conditions with characteristic conservation laws Invited
Makoto Okumura
Multidisciplinary research on nonlinear phenomena: modeling, analysis and applications 2023.11
Event date: 2023.11
Academic Awards Received 【 display / non-display 】
-
大阪大学情報科学研究科賞
2018.3 大阪大学
Grant-in-Aid for Scientific Research 【 display / non-display 】
-
力学的境界条件下の問題に対する、任意多角形格子上の構造保存数値解法の構成
2023.4 - 2028.3
JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists
奥村 真善美
Authorship:Principal investigator
-
Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary
2021.8 - 2023.3
JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up
Committee Memberships 【 display / non-display 】
-
2022 日本応用数理学会 2022年度年会実行委員
Qualification acquired 【 display / non-display 】
-
High School Teacher Specialization License
-
First Kind of High School Teacher License
-
First Kind of High School Teacher License
-
Junior High School Teacher Specialization License
-
First Kind of Junior High School Teacher License