写真a

MATSUMOTO Saki

Position

特任教員

External Link

Graduating School 【 display / non-display

  • Osaka University   Graduate School of Science   Department of Chemistry   Graduated

    2014.4 - 2017.3

      More details

  • Osaka University   Graduate School of Science   Department of Chemistry   Graduated

    2012.4 - 2014.3

      More details

  • Osaka University   Faculty of Science   Department Chemistry   Graduated

    2008.4 - 2012.3

      More details

Graduate School 【 display / non-display

  • Osaka University   Graduate School, Division of Natural Science   Doctor's Course   Completed

    2014.4 - 2017.3

  • Osaka University   Graduate School, Division of Natural Science   Master's Course   Completed

    2012.4 - 2014.3

Campus Career 【 display / non-display

  • KONAN UNIVERSITY   Frontier of Institute for Biomolecular Engineering Research in Science and Technology Department of Nanobiochemistry   特任教員

    2019.4

External Career 【 display / non-display

  • Sumitomo Dainippon Pharma   Drug Research Division

    2017.4 - 2019.4

  • Sumitomo Dainippon Pharma Co., Ltd.   Drug Research Division, Chemistry Research Unit

    2017.4 - 2019.4

      More details

    Country:Japan

 

Papers 【 display / non-display

  • New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments Reviewed

    Saki Matsumoto, Naoki Sugimoto

    Topics in Current Chemistry   379 ( 3 )   2021.6

     More details

    Authorship:Lead author   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s41061-021-00329-7

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s41061-021-00329-7/fulltext.html

  • Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence Reviewed

    Saki Matsumoto, Hisae Tateishi-Karimata, Tatsuya Ohyama, Naoki Sugimoto

    RSC Advances   11 ( 59 )   37205 - 37217   2021

     More details

    Authorship:Lead author   Publisher:Royal Society of Chemistry (RSC)  

    The modification of DNA can regulate the transition between a duplex and quadruplexes during senescence responding to surrounding environments.

    DOI: 10.1039/d1ra07201c

    researchmap

  • Effect of molecular crowding on the stability of RNA G-quadruplexes with various numbers of quartets and lengths of loops. Reviewed International journal

    Saki Matsumoto, Hisae Tateishi-Karimata, Shuntaro Takahashi, Tatsuya Ohyama, Naoki Sugimoto

    Biochemistry   2020.6

     More details

    Joint Work

    G-quadruplexes are non-canonical structures formed by guanine-rich regions of not only DNA but also RNA. RNA G-quadruplexes are present across the transcriptome in various regions of messenger RNAs and non-coding RNAs and play important roles in key cellular functions. Furthermore, stable RNA G-quadruplexes control the extent of biological functions, such as mRNA translation and antigen presentation. To understand and regulate functions controlled by RNA G-quadruplexes in cellular environments, which are molecularly crowded, it is important to investigate the stability of G-quadruplexes in molecular crowding. Here, we systematically investigated the thermodynamic stability of RNA G-quadruplexes with different numbers of G-quartets and lengths of loops. The molecular crowding conditions of poly(ethylene glycol) with an average molecular weight of 200 (PEG200) were found to stabilize RNA G-quadruplexes with three and four G-quartets, while G-quadruplexes with two G-quartets did not exhibit any stabilization upon addition of PEG200. On the other hand, no difference in stabilization by PEG200 was observed among the G-quadruplexes with different loop lengths. Thermodynamic analysis of the RNA G-quadruplexes revealed more appropriate motifs for the identification of G-quadruplex forming sequences. The informatics analysis with new motifs demonstrated that the distributions of G-quadruplexes in human non-coding RNAs differed depending on the number of G-quartets. Therefore, RNA G-quadruplexes with different numbers of G-quartets may present different roles in response to environmental changes in cells.

    DOI: 10.1021/acs.biochem.0c00346

    PubMed

    researchmap

  • Hydroxyl groups in cosolutes regulate the G-quadruplex topology of telomeric DNA. Reviewed International journal

    Hisae Tateishi-Karimata, Dipanwita Banerjee, Tatsuya Ohyama, Saki Matsumoto, Daisuke Miyoshi, Shu-Ich Nakano, Naoki Sugimoto

    Biochemical and biophysical research communications   2020.2

     More details

    Joint Work

    Telomeric G-quadruplex topology has the ability to regulate telomerase activity, which counteracts the shortening of telomere with successive cell divisions, thereby causing genomic longevity. However, the detailed mechanism of G-quadruplexes topologies formed by telomeric sequences requires further investigation. In this study, we quantitatively investigated the effect of cosolutes, particularly the varying number of hydroxyl groups, on the structural transition between hybrid type and parallel G-quadruplexes formed by telomeric DNA sequences. Cosolutes with one or no hydroxyl groups in the vicinal position more efficiently induced the transition to parallel G-quadruplex from hybrid G-quadruplex than those with more hydroxyl groups. We also examined the effect of cosolute structures on the hydration of G-quadruplex formation; the results indicated that cosolutes with fewer hydroxyl groups lead to the release of greater amount of water during G-quadruplex formation. Molecular dynamics results showed that the parallel G-quadruplex was more dehydrated than the hybrid type G-quadruplex. Generally, a dehydrated structure is favored under crowding condition. Thus, depending on the surrounding cosolutes, the G-quadruplex topology can be controlled by the G-quadruplex hydration state.

    DOI: 10.1016/j.bbrc.2020.02.045

    PubMed

    researchmap

  • Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting. Reviewed

    Matsumoto S, Caliskan N, Rodnina MV, Murata A, Nakatani K

    Nucleic acids research   46 ( 16 )   8079 - 8089   2018.9

     More details

display all >>

Academic Awards Received 【 display / non-display

  • 日本化学会第96春季年会学生講演賞

    2016.3   日本化学会  

    松本 咲

     More details

  • 第9回年会 ポスター賞

    2014.6   日本ケミカルバイオロジー学会  

    松本 咲

     More details

Grant-in-Aid for Scientific Research 【 display / non-display

  • 核酸の高次構造が液-液相分離に与える影響の解明

    2019.8 - 2021.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up

    松本 咲

      More details

  • 小分子によるRNAシュードノット構造の形成と遺伝子発現制御への応用

    2014.4 - 2017.3

    JSPS Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows

    松本 咲

      More details

    これまでに合成小分子NCTnがRNA中のCGG/CGG配列に特異的に結合することによりシュードノット構造を誘起し、さらに誘起されたシュードノット構造により-1リボソームフレームシフト(-1PRF)が引き起こされ、下流の遺伝子が発現することをin vitroと細胞内の両方で実証してきた。本年度はNCTn誘起型-1PRFのカイネティクス解析を行った。クエンチフローシステムを用いて翻訳時間0.05秒~200秒で産出するペプチド鎖を調べたところ、NCT8結合配列であるCGG/CGG配列をもつmRNAに対しては、NCT8非存在下と比べてNCT8を添加したときに、0フレーム産物より-1フレーム産物の生成速度が速いことが示された。
    また、これまでにRT-PCRによる細胞内RNAの定量解析により、NCT添加から12~24時間の間にNCT8の副次的な影響が出ていることが示唆されていた。そこで本年度は、次世代シーケンサーを用いたRNA-seqにより、NCT8の添加により細胞内のトランスクリプトームがどのように変動するのかを解析した。その結果、化合物添加後12時間及び24時間後に発現促進及び発現抑制した遺伝子が見つかった。プロモーター領域をTSSの上流500塩基と定義し、配列解析を行ったところ、NCT8により遺伝子の発現が上昇した遺伝子のプロモーター領域にはGCリッチな配列が多いことが明らかになった。SPR解析によりNCT8とプロモーター領域により多く発見された4塩基を持つDNAとの相互作用が確認できた。一方、プロモーター領域で発見頻度の低い4塩基をもつDNAではNCTとの相互作用は観測されなかった。このことから、NCTがGCリッチなプロモーター配列と相互作用することにより、遺伝子発現を上昇させる可能性が示唆された。

    researchmap

 

Social Activities 【 display / non-display

  • NanoBioCollege 2020 社会人向け連続講座 -ナノバイオから次世代の医薬品を考える-

    Role(s): Lecturer

    甲南大学先端生命工学研究所 (FIBER)  2020.1

     More details

  • 第8回なでしこscientistトーク

    Role(s): Lecturer

    甲南大学先端生命工学研究所 (FIBER)  2019.11

     More details

  • 高校生向け実験講座『FIBRリサーチカップ』

    Role(s): Lecturer, Organizing member

    2019.8

     More details